
Data-Intensive Management and Analysis for Scientific Simulations

Randy Hudson1 John Norris1 Lynn B. Reid2,3 G. Cal Jordan IV1

Klaus Weide1 Michael E. Papka1,4

1 Flash Center, University of Chicago, Chicago, IL 60622, USA,
2 Western Australian Geothermal Centre of Excellence, CSIRO, Kensington, WA 6151,

3 School of Environmental Systems Engineering, University of Western Australia, Crawley, WA,
4 Computation Institute, Argonne National Laboratory / University of Chicago, Chicago, IL 60622, USA

Email: papka@anl.gov

Abstract

Scientific simulations can produce enormous amounts
of data, making the analysis of results and manage-
ment of files a difficult task for scientists. The sim-
ulation management and analysis system (Smaash)
described here is designed to allow scientists to easily
capture, store, organize, monitor, and analyze simula-
tion results. The system is automatic, standardized,
and secure. Smaash was built using open-source tools
and modularized to be independent of the scientific
simulation. The web-based front-end allows the sci-
entist to easily interact with the data, and has proved
its usefulness in improving the efficiency of a scientific
team’s workflow.

Keywords: Data-intensive, scientific workflow man-
agement, FLASH astrophysical code

1 Introduction

High performance parallel computing allows scien-
tists to solve complex physical problems through com-
puter simulation. However, the massive amounts of
data generated and the complex computing environ-
ment can create additional complications. A recent
review by Ludäscher et al.(2009) describes how sci-
entific workflows can assist scientists in extracting
knowledge from these data-intensive operations by
automating components within pipelines. Within the
fusion community, Klasky et al.(2008) and colleagues
have developed a system that handles the storage
management, data movement, metadata generation
and management, and a means to analyze the results.
In response to scientists’ needs, a simulation manage-
ment and analysis system (Smaash) was developed at
the University of Chicago and Argonne National Lab-
oratory (USA). Smaash provides an integrated way to
monitor simulations and analyze computational re-
sults; catalog, store, and retrieve simulations; and
prepare output for publications. The system is inde-
pendent of the particular simulation code, accessible
from many HPC and browser-based platforms, and
built around open-source software tools. Data secu-
rity and provenance is considered throughout. The

This work was part supported at the University of Chicago by
the US Department of Energy under contract B523820 to the
ASC Alliances Center for Astrophysical Nuclear Flashes.

Copyright c©2011, Australian Computer Society, Inc. This pa-
per appeared at the Ninth Australasian Symposium on Parallel
and Distributed Computing (AusPDC 2011), Perth, Australia.
Conferences in Research and Practice in Information Technol-
ogy (CRPIT), Vol. 118, J. Chen and R. Ranjan, Ed. Reproduc-
tion for academic, not-for profit purposes permitted provided
this text is included.

analysis components are hidden behind a web-based
front end, enabling scientists to focus on their results
and not get bogged down by information overload.

2 Typical Data Requirements – FLASH code

The FLASH multiphysics adaptive mesh refinement
code developed at the University of Chicago (Dubey
et al., 2009) provided prototype data, and the astro-
physicists of the Flash Center provided essential feed-
back to Smaash developers about analysis needs and
scientific workflows. Typical scientific applications of
the code include weakly-compressible turbulent flows
(Fisher et al., 2008) and detonation of Type 1A su-
pernovae (Jordan IV et al., 2008). The initial appli-
cation is a set of parameter studies of Type 1A su-
pernovae explosions which were calculated on the un-
classified Purple HPC system at LLNL and the IBM
BlueGene/P HPC system at Argonne National Lab.

A typical simulation of this three-dimensional
physical system requires eight linked runs, or restarts,
of 12 wall-clock hours each, which progressively cover
only a few seconds of simulation time. Calculated on
thousands of cores, the output might have: 90 large
result files at 34GB each; 600 smaller analysis files
at 9 GB each; log files recording integrated physi-
cal results and computational progress; and affiliated
processing and visualization results. Total storage for
one run may require eight terabytes of disk space; the
parameter study required 16 of these complete simu-
lations. The management of the data produced in this
scientific study could be overwhelming for researchers
who are primarily interested in abstracting physical
insights from the computational results. Moreover,
because of the limited availability of these HPC sys-
tems, the computed data must be carefully preserved
and provenance understood.

3 Smaash Components

Smaash consists of three main parts: a back-end to
capture, store, verify, and monitor simulation; a front-
end designed for the scientists’ needs; and a database.
The front- and back-ends have modular components,
allowing easy extensibility. The database is designed
to be independent of the simulation code output for-
mats and research genre.

The first step in the Smaash back-end is to auto-
matically capture the data being generated and store
it securely in the database. The archiving pipeline
starts with a Collector which tracks the simulation
progress through the simulation code’s log file, and
launches dynamically-loaded tools to record informa-
tion into the database about each individual output
type being generated. Next, the Archiver automates
the transfer of files on the local filesystem into long-
term mass storage, additionally storing details about



the provenance in the database. The Verifier main-
tains the accuracy of the database, and the Associ-
ator keeps related analyses, such as post-processing
results, connected to the original simulation results.
The Observer monitors these back-end processes, and
emails the user of significant changes. This program
frees scientists from tending a lengthy simulation by
being tied to a terminal, and allows efficient use of
allocated computer processing time.

The back-end tools generally run on the same HPC
system as the concurrent simulation, but on sepa-
rate processors to avoid degrading simulation perfor-
mance. They are robust and can recover from fatal
conditions, and communicate securely.

3.1 User Interfaces

The control interface for Smaash is web-based and
allows computational scientists to manage most post-
processing and analysis from a web browser distant
from the HPC system. Two primary front-end com-
ponents are the TreeView, which hierarchically organ-
ises simulation sets, and the GraphView which shows
visual details of simulation progress and provides easy
access to data output. Figure 1 shows the TreeView in
action, where multiple users can keep track of cascad-
ing simulations and their restarts. Figure 2 displays
a user-definable concise window into the enormous
quantity of data created by two simulations.

Figure 1: Web interface to the TreeView, showing
multiple restarts in a single simulation.

Figure 2: Web interface to the GraphView of two sim-
ulations, showing integral physical parameters plot-
ted against simulation time. Curve coordinates are
displayed on the right.

Other interfaces help the user keep track of sim-
ulation progress and do quick data analysis, such
as the Visualizer pipeline, which provides graphical

snapshots of physical states over time. Summary
web pages detail the accumulated information in the
database and allow user annotations, while the robust
URL feature of the graph pages allows a science group
to share up-to-date notes through a wiki page.

3.2 Implementation

Smaash is designed to be easily adapted to a new
scientific simulation framework by using modular-
ity and standardization. Soft constraints encourage
users to enter meaningful descriptions, and maintain
data provenance. Off-the-shelf open-source tools such
as MySQL, Django/Dojo/Dojango, and Matplotlib
allow rapid development, extensibility, and provide
well-considered security protocols. The Smaash de-
velopment team is actively looking for new collabora-
tions which would benefit from the integrated man-
agement and analysis tools described here.

4 Smaash in Action

The Smaash data management pipeline has greatly
improved the efficiency of the scientific team’s work-
flow. In one example, the front-end GraphView al-
lowed easy amalgamation of multiple simulations into
a clear picture showing differences in supernovae deto-
nation times. Cross-referencing to the TreeView pro-
vided the means to pinpoint and extract crucial files
for further analysis. In another computer science ex-
ample, the FLASH programming team was able to
spot a glaring inefficiency in CPU usage by plotting
elapsed output file write times in the GraphView.
Implementing a quick programming fix improved the
use of precious allocated CPU time by forty percent.
Smaash allows the scientist to shift focus from mon-
itoring the simulation to analysing the results, while
maintaining data integrity.

5 References

Dubey, A, Antypas, K, Ganapathy, MK, Reid, LB,
Riley, K, Sheeler, D, Siegel, A & Weide, K
(2009), ‘Extensible component based architecture
for FLASH, a massively parallel, multiphysics sim-
ulation code’, Parallel Computing 35, 512–522.

Fisher, RT, Kadanoff, LP, Lamb, DQ, Dubey, A, & 15
others ‘Terascale turbulence computation using the
FLASH3 application framework on the IBM Blue
Gene/L system’, IBM Journal of Research and De-
velopment 52 (1/2) 127–137, special issue on “Ap-
plications of Massively Parallel Systems”.

Jordan IV, G, Fisher, R, Townsley, D, Calder, A,
Graziani, C, Asida, S, Lamb, D & Truran, J.
(2008), ‘Three-dimensional simulations of the de-
flagration phase of the gravitationally confined det-
onation model of Type Ia supernovae’, The Astro-
physical Journal 681, 1448–1457.

Klasky S, Barreto, R, Kahn, A, Parashar, M, Parker,
S, Silver, D & Vouk, M (2008), ‘Collaborative vi-
sualization spaces for petascale simulations’, Inter-
national Symposium on Collaborative Technologies
and Systems 203-211.

Ludäscher, B, Altintas, I, Bowers, S, Cummings, J,
Critchlow, T, Roure, EDDD, Freire, J, Goble, C,
Jones, M, Klasky, S, McPhillips, T, Podhorszki,
N, Silva, C, Taylor, I & Vouk, M (2009), Sci-
entific process automation and workflow manage-
ment, in A Shoshani & D Rotem, eds, ‘Scientific
Data Management: Challenges, Technology, and
Deployment’, Computational Science Series, Chap-
man and Hall/CRC, chapter 13.


